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The treatment of exactly integrable systems in x-srious branches 

of two-dimensional classical and quantum physics has recently heen 

placed in a unified framework by the development of the quantum inverse 
t-4 

method . This methodconsolidates a broad range of developments in 

classical nonlinear wave (soliton) physics, statistical mechanics, and 

quantum field theory. The essential technique for analyzing exactly 

integrable quantum systems was invented by Bethe in 19313, who constructed 

the eigenstates of the isotropic Eeisenberg spin chain. In various forms, 

Bethe's ansatz has been used over the past 50 years to study a variety 

of spin chains, two-dimensional lattice statistical models, many-body 

problems, and quantum field theories. Ironically, the study of integra- 

ble classical field systems is of much more recent origin, dating from 

the fundamental work of Gardner, Greene, Kruskal, and Miurn in 19576, who 

c!iscorered the inverse scattering method for reducing the Korteweg-deVries 

equation to a sequence of linear problems. It is the quantum mechanical 

extension of the inverse scattering method and its relationship to the 

methods associated with Bethe's ansatz which form tht suhiect of this talk. 

I'll begin by reviewing the basic idea of the classical inverse 

method. In this method one solves the initial value problem for a non- 

linear equation of motion by considering an auxiliary linear eigenvalue 

problem of the form 

k Y(e) = ic c;7,(59 ‘iEC?-,-s> , 

For the most familiar cases (e.g. the nonlinear SchrHdinger and Sine-Gordon 

equations), G, b, 35) is a 2x 2 matrix which depends on the eigenvalue 

3 and on a local field C&v, . A particular solution to (1) must be 

specified by a boundary condition. For example, a matrix solution 

may he specified at a point'X< by ~(x,,<~) .= 1 .= identity matrix. 

The nonlinear equation of motion for cp (7, +3 is related to the 

linear problem by allowing the eigenvalue equation (1) to depend para- 

metrically on time in such a way that the time dependence of the solu- 

tion '2 is given by 

>y*” = KQZ, 

where Q, is another 2x 2 matrix which also depends on the tigenvnlue 3 



and on the field @Lx,*) Eqns. (11 and (2) form n "Lax pair" 

-yF= L+T . The nonlinear equation for f$ emerges as a 

consistent, condition f'rom cross-differentiation of (1) and (2), i.e. 

>- =b 
2 

‘J x -3 *” 
j,v>.g , which gives 

.- l-/v= 3, Q$+. 4, +z@, , @v-j = 0 6 (3) 
By various choices for the matrices Q/A. 1 the equation r/g=0 

reduces to certain nonlinear equations of motion for the field $ which 

have the property of complete integrability. The matrix eigenvnlue equa- 

tion (1) was first introduced by Zakharrav and Shabat 
7 

for the nonlinear 

Schrtidinger equation, and various nonlinear equations which could be 

constructed from the consistenceg condition (3) were first systematically 
8 

explored by Ablowitz et al. . Here we will focus on the nonlinear Schrtl- 

dinger equation 

;b,Q? ‘= -L>Q -i-xc- \Sl”cF , (4) 

which provides the simplest and most completely explored example of the 

quantum inverse method. To recover this equation from (31, we choose 

9, ~= 

i 

kg- c c#-J+cf E (Pi&A &) 

-Cj+$-iQ,‘) 
1 -J$‘c c(Q”@ 

Q, = [;;A -;;) 

(5a) 

(5b) 



Here and in the Soll0~~-ing discussion we will denote the ei:cnvalue 3 

by & to emphasize its eventual roll as a momentum rarinhlc in Bethe's 

n n s a t. z . 

The method for solving (.I) consists of"scquence of steps which 

rlrc quite analogous to t,he use of direct and inverse Fourier transforma- 

tion to solvr a linear equation of motion. At a fixed time, the linear 

problem is used to define a transformation from the field CT(x) to a 

set of scattering data c&l , 444 which are obtnincd from the 

asymptotic (in .* ) behavior of a solution to (1). This will be referred 

to as the direct transform. The inverse transform, which is accomplished 

by the Gel'fand-Levitan technic]ue maps the scattering data back to the 

local field 0 . Instead of dwelling on the classical method, we will 

proceed directly to the quantum nonlinear Schrtidinger code1 (also known 

as the delta-function gas) for which the field iQ is an operator with 

equal time commutation relations ~cwl,U’“i~~). -S(r-2) . For 

this case we construct an operator transform by considering n normal 

ordered linear problem 

2-23 (x, bz) 1= *, : l&(7, c4) qf(%, 42) ‘. , 

where Q, is again given by (5b) and -97 is a normal ordered operator 

functional of C$ and ce'* which may be written explicit ly as R path- 

ordered exponential string operator, 

~[-c,,bz)’ “, Q e4.y 1, \,j,+ 8) hf: , 

Note that the path ordering refers to the matrix structure, while the 

normal ordering refers to the operator structure. 

In a unbounded system with a finite number of particles (zero 

density) we may assume that @(%)A 0 as T'.-+ Z OJ in the sense 

of weak convergence. I'll comment later on how to recover results for 

finite density systems from this formalism. With this assumption we 

find that 

Yb, Q * 3 f ,’ Vk, 1‘) x (constant matrix) , (8) 



V(%,bJ-- e 

i 

Lkv,/-, (-J 

C) 1 
,-ihe, ,, 

(9) 
I 

The scattering data operators Cc(~~ and .&(&) are defined by compar- 

ing the behavior of!!? at-- and ,+co , specifically 

J(~J = L v%,-,/k) scdj i,k, 6) I--F+& Y, -2-e 
a(d A-74 

.=t \I 
- 

,&(l.J cqa ” (10) 

The central property of the CL and e operators is that they obey simple 

commutation relations. Theseare most elegantly derived by the method of 

Sklyaninl, which was pattered after Baxter's treatment of the eig!lt 

vertex model . One compares equations for the quantities 

&k+= ‘~b$,)@W,ae,) =“d i-\,,b)= !E(glx) 65 ‘q-g%, k,) . 
From (61, we see that 

+x ii,=‘= k:qY,:@ cfx.+:,p-aJ;~;. =;,~~Jx: (l3) 
/ 

where the subscripts refer to the eigenvalue, and 

(32) 

I" Eq. (12), v* are Pauli matrices, and the last term "rises from 

normal ordering (11). Similarly, by interchanging cigenvalues, w-e get 

k H,,= A : ri,, H,, : (13) 

The fundamental property of the matrices r and ,= is that they 



are found to be precisely the same ns the states cons- 

tructed by Lieb and Liniger 
10 I" ~1963 using llethe's nnsntz. This establish- 

es the essential connection between quantum inverse methods and Bethe's 

ansntz. The operator Lzci<\ is the generating function for a" infinite 

numher of conserved operators. Another useful operator is the quantized 

reflection coefficient fv"(kcc) = AL(k) CL-' (EC) , which also creates 

eigenstates of H , but with R different normalization. The states created 

by R" are in fact the properly normalized states. R and RK have very 

simple commutation relations which are central to the formulation of the 

inverse (Gel'fand-Levitan) transform to he discussed nest, 

gJR,) s;‘(L) = .r ~~~~- “al :gy,Qfp(q 1 

where c 
,i nie> 

is the two-body 

phase shift. 

It should be remarked that all of these results have been derived in a" 

infinite volume. Since commutation relations of the form (~17) hold not 

only for 'j- but for the solution F itself, the commutator algebra of 

cc' s and L' r in a finite box may also be obtained by the same method. 

This is the most straightforward route to discussion of finite density 

systems, but it leads to the following related cbmplicntions : 

(1) Only cL$ -toT~id = Th'3Ih) can be diagonalized, and 

not CL(k) and R'(e) separately ; (2) the ,A!r -states (18) are 

eigenstates of u-i-o? only if the values of &,,...,&z~ satisfy 

certain constraints, which are precisely the Ijeriodic boundary conditions 

of Bethe's ansatz in a finite box ; (3) R 04 is not a useful operator. 

All this makes the formulation of the Gel'fand-Levitan technique for 

recovering @(*I from the scattering data operators difficult if not 

impossible to carry out in a finite box. However, n susessful nlterna- 

tive has been formulated which avoids the introduction of R finite box 

but recovers the correct finite density result s hy summing a fugacrty 

expansion at finite temperature, as discussed below. 

To formulate tile Gel'fand-Levitan cletbod 
11 

, xie consider n column/ 

vector Jest solution 



are related by a C-number similarity transformation 

(14) 

(15) 

and 

(16) 

From this one finds that the quantities ij,, and h,, are related 

by the same similarity transformation, which yields asymptotically a 

set of commutatioh relations for the scattering data operators c., -PI a , 

R , ‘and j,,! , 

sp r_m @ T!k,ll= [T(&)@~(~,j] (Jy , (17) 

From the commutation relations (171, it may be shown that states created 

by the ,!k -operators acting on the vatuum (zero-particle) state, 

kk,..., a =- w%) .ck) ‘ * , ,&I&J ) 0) (18) 

are eigenstates of the operators (h(G f or any value of & . Moreover, 

the Hamiltonian of the system i-l = \ ik &L?' Q,@ A- c G"cf'@ @I 

may be constructed from the coefficients of the expansion of &. in 

powers of j/j& , and is therefore also diagonal on the states (18), 1-I Ik,, kx, I ..) G= c J *$v jh,,b, ,,,), AN> . (19) 



(21) 

of the Zaharov-Shnbat problem 

condition for real & , 

with boundary 

-!v 
0 

A ,” Cl 
-;h?r,, 

(22) 3(-==- I 

We also need the conjugate solution 

(23) 

The Gel'fand-Levitnn integral equation follows from a dispersion relation 

for a (weakly) analytic operator function iii, L% AC,), !xhich is equal to 

'k" eAr/, 
in the upper half-plane and has a discontinuity of 

;-\rc g+(L) >(2,k) c-:h-- across the real axis. It can 

be shown that, for repulsive coupling, C> 0 ,Q is also analytic in 

the lower half-plane and satisfies a simple dispersion relation, leading 

to a pair of coupled integral equations for \, and ?c= , 

g-&-2; / (24a) 

These may be solved by iteration. The field operator qix) is recovered 

from the Jost solution'> by letting &-+m and noting the asymp- 

totic behavior 

.$.-F-c 

P(";)- ~[;;;$~+~(+).l:" 

): 



This gi\-es @(x) and as functionals of E(Lt) 

and 'g"(h) : 

#&) -= EC P-) CL) 
I (26) 

(27) 

@i(r) -= \&+ R(L) & = &) , 
(26~~) 

i7)(“(~)= -L\% $ $ e itr,++)‘rb /?“(I) fl ik,) &) 

(%-4-4bA-&--;4 ) (16b) 
, . . 

and 

.$‘(+ -2 J-y&& (Zpn.4)~ i+~x fl&t,) f\&,)PkJ ( 27b) 0,-Q,-;~)(l)l-~;i~,(~*-k;:l) ’ 

The expansion (26) for Q(X) has a very interesting property 

in the limit of infinitely repulsive coupling, C-7 m 
12 . Surprising- 

lY, in what looks like an expansion in positive powers of c , the 

c-+- limit can be taken term by term after symmetrizing the 

integrands and using the '&$!. and $!*kR' commutation relations (2Oa). 

For example, the second term Q") gives in this way 

ii,“‘(~) -.z - c $k && ,&,+ky:)~r 

i 

&b, r~~,,l:~$?i~,)~ c 

(~\-l$-ik)(~-4~~~-) -@J&c , (2R) 
ii j 

which has the finite c -, w limit 



where ?-&) is the Fourier transform of the reflection coefficient, 

Bir) = -2jSPy Ely).?, (30) 

and NR indicates normal ordering with respect to the f? operators 

(i.e. R * '6 to the left and R' s to the right). Term-by-term analysis 

of the series (26), "sing the same procedure of symmetrization of inte- 

grands, shows that 

(31) 

The Gel'fand-Levitan series for co I") thus exponentiates into a Jordan- 

Wigner transformation in the limit CL+- 7 

cX-4 = N R &o (-$ky , ‘ai,] %) .it (y ?J 

(32) 

We note also that in the limit C-+a , the two-body phnse shift 

e 
ih 

--+ --I 9 and the algebra of the R and /?' operators i-educes 

to canonical fermion anticommutation relations, e.g. in coordinate space 

~~~~),"n~~~=~a~*,,~c,~= 0 and i_$&), n'(& = &r-2). 

The Jordan-Wigner transformation is a standard trick in other contexts 

for converting boson operators to fermion operators. Here it arises as 

a special case of the Gel'fand-Levitan transformation. The nature of this 

transformation in other models, particularly the two-dimensional Ising 

model suggests a possible connection between exact integrability and 

inverse scattering transformations on one hand and Krnmers-Kannier duality 

and order-disorder transformations on the other. 

The Gel'fand-Levitan transformation for the charire density 

j,(x) , b. (271, also has some interesting properties whicll provide 

the key to treatment of finite density systems without the introduction 
13 

of a finite box . We wish to calculate the uartition function 

Q z-T-,, ,-@krN’) , (33) 



or more precisely, the connected part LQ . This may be related to 

certain "almost forward" matrix elements of the charge density p-1 3 

Lc$ = k. 7th YQj; e- Pkr”) , 

where 

y(t) ‘S cyv fq-’ (*+) e; NTrr ).< I 
-- 

(34) 

(35) 

with K = Galilean boost operator. The operation of inserting y(v) 

inside the trace and taking the limit t--k> 0 outside the trace simply 

picks out the connected part. Using the Gel'fand-Levitan expression (27) 

for $pc34 along with the algebra of the R operators, we obtain 

the thermodynamics of the system at finite density and temperature first 
14 

derived from Bethe's ansatz by Yang and Yang . The pressure 8 is given 

by 

F= \!gL(, + ,-w&q , (36) 

where c-(k) is the solution to a nonlinear integral equation 

C(L) ‘= g- /,#A - -$ &i& K&g) Q&tcL-P'q, 
1. li 

(37) 

Here the kernel i<: is given by 

(38) 

The expansion of the pressure in powers of the kernel \< is in one-to-""" 

correspondence with the Gel'fand-Levitan expansion of the charge density 

$Jx) 7 Eq. (27). The zer" temperature ( ;3 3.Y f limit of (37) reduces 

to a linear integral equation 

c I&) = &Yr + 1 * 6% i($- kf j t (&,) - 
.- %= 

(39) 



wherr the "Fermi level" ki= is determined bv &;?,)= 0 . The 

spectrum of excitations above the ground state is given simply in terms 

of the function G&) (It consists of particles with energy G(L) 

and holes with energy -E(b) 1.1 This spectrum was first obtained by Lieb, 

using Sethe's ansntz and periodic boundary conditions in a box. Here, 

we have managed to obtain the fundamental spectral equation (37) or (39) 

without introducing a box and ruining the simple properties of the $?, 

operators. The use of the Gel'fand-Levitan formalism in finite temperature 

calculations of the type describedhere may offer a promising approach to 

the study of Green's functions for exactly integrable theories. 
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